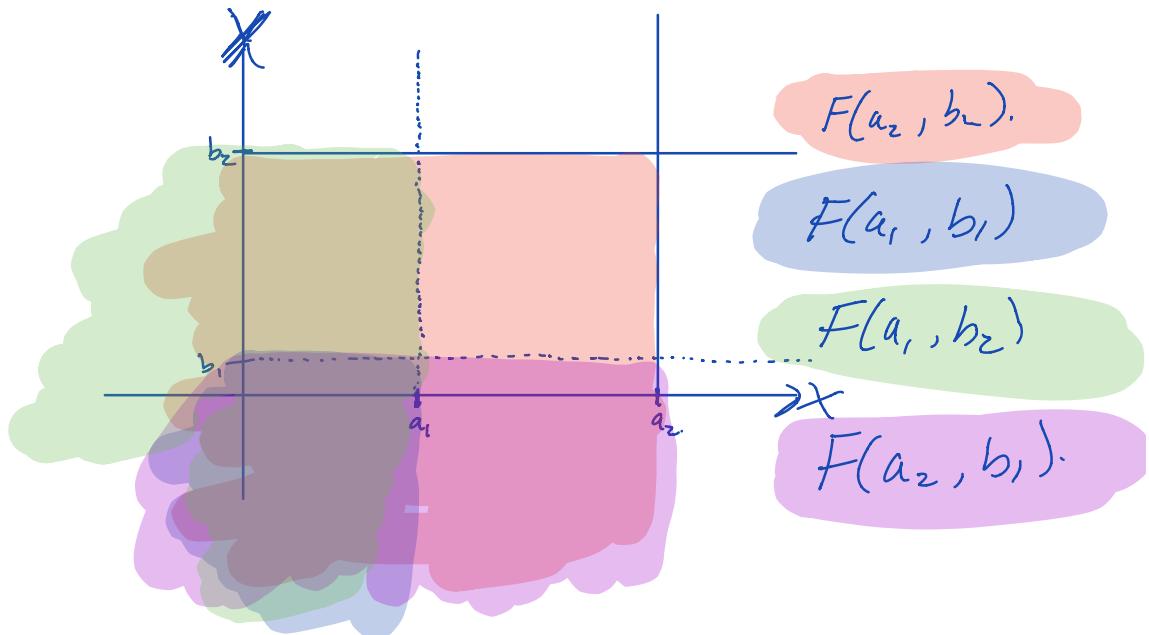


Lecture 24

- So far, we have been concerned with statements about single random variables.
- In this chapter we want to address questions about multiple random variables.
- For any two random variables X and Y , we define the Joint Cumulative Probability Distribution Function as

$$F(a, b) = P(X \leq a, Y \leq b), \quad -\infty < a, b < \infty.$$

- many questions about X and Y can be answered by $F(x, y)$. For example: suppose we want

$$P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = \dots$$


$$= F(a_2, b_2) - \underbrace{F(a_1, b_2) - F(a_2, b_1)}_{\substack{\text{subtracted } F(a_1, b_1) \\ \text{twice (double counting)}}} + \underbrace{F(a_1, b_1)}_{\text{added back.}}$$

When X and Y are discrete, we define the joint probability mass function as

$$p(x, y) = P(X=x, Y=y).$$

Now, the events $\{X=x, Y=y_j\}, j\}$ are mutually disjoint, and so

$$\begin{aligned} P_X(x) &= P(X=x) && \leftarrow \text{probability mass function of } X \\ &= P(Y \{X=x, Y=y_j\}) \\ &= \sum_j P\{X=x, Y=y_j\} \\ &= \sum_j p(x, y_j). \end{aligned}$$

Similarly $P_Y(y) = \sum_i p(x_i, y)$

Ex: Suppose an urn consists of 3 red, 4 white, and 5 blue balls. Suppose we draw three balls. Let X be # of red balls, Y = # of white balls.

Let $p(i, j) = P(X=i, Y=j)$. Note that if of the three balls chosen i are red and j are white, then the remaining $3-i-j$ balls are blue. Since each draw is equally likely,

$$p(i, j) = \frac{\binom{3}{i} \binom{4}{j} \binom{5}{3-i-j}}{\binom{12}{3}}.$$

Remark: $P_Y(y)$ and $P_X(x)$ are also called marginal probability.

We say that X and Y are jointly continuous if there exist a function $f(x, y)$ such that for every (measurable) set $A \subseteq \mathbb{R}^2$, we have that

$$P(X, Y \in A) = \iint_A f(x, y) dx dy.$$

We call $f(x, y)$ the "joint probability density function" of X and Y . If $A = C \times D$ is a rectangular region,

then $P(X, Y \in C \times D) = \iint_{C \times D} f(x, y) dx dy.$

In particular, if we let $C = (-\infty, a]$, $D = (-\infty, b]$, then

$$F(a, b) = P(X, Y \in (-\infty, a] \times (-\infty, b]) = \int_{-\infty}^a \int_{-\infty}^b f(x, y) dx dy.$$

Differentiating we have

$$f(a, b) = \frac{\partial^2}{\partial a \partial b} F(a, b).$$

If X and Y are jointly continuous, then they are also continuous random variables on their own.

We can obtain their (Marginal) Probability density functions as:

$$\begin{aligned} P(X \in A) &= P(X \in A, Y \in (-\infty, \infty)) \\ &= \iint_A f(x, y) dy dx \\ &= \int_A f_X(x) dx. \end{aligned}$$

where $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$
 probability density function of X .

Similarly $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$.

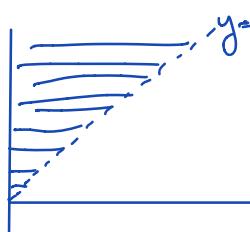
Ex: Suppose that

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y}, & 0 < x < \infty, 0 < y < \infty \\ 0 & \text{otherwise.} \end{cases}$$

a) Compute $P(X > 1, Y < 1)$.

$$P(X > 1, Y < 1) = \int_1^1 \int_0^{\infty} 2e^{-x}e^{-2y} dx dy = 2 \left(\int_0^1 e^{-2y} dy \right) \left(\int_1^{\infty} e^{-x} dx \right) = e^{-1} (1 - e^{-2}).$$

b) $P(X < Y) = \iint_{\{(x,y): x < y\}} 2e^{-x}e^{-2y} dx dy$.



$$= \int_0^{\infty} \int_0^y 2e^{-x}e^{-2y} dx dy = 1/3.$$

c) $P(X < a) = \int_0^a \int_0^{\infty} 2e^{-2y}e^{-x} dy dx = 1 - e^{-a}$

Ex: Suppose that the joint density of X and Y is given by

$$f(x,y) = \begin{cases} e^{-(x+y)} & 0 < x < \infty, 0 < y < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Find the density function of X/Y .

Soln: First, we find the cumulative distribution function

of X/Y : For $a > 0$, we have

$$F_{X/Y}(a) = P\left\{\frac{X}{Y} \leq a\right\}.$$

$$= \iint_{\substack{x \\ y \\ x/y \leq a}} e^{-(x+y)} dx dy$$

$$= \int_0^\infty \int_0^{ay} e^{-(x+ay)} dx dy,$$

$$= \int_0^\infty e^{-y} \int_0^{ay} e^{-x} dx dy$$

$$= \int_0^\infty e^{-y} (1 - e^{-ay}) dy.$$

$$= -e^{-y} + \frac{e^{-y(a+1)}}{a+1} \Big|_0^\infty$$

$$= 1 - \frac{1}{a+1}$$

Differentiating, we get $f_{X/Y}(a) = \frac{1}{(a+1)^2}$

We can also define the joint probability of n random variables:

$$F(a_1, \dots, a_n) := P(X_1 \leq a_1, \dots, X_n \leq a_n).$$

X_1, \dots, X_n are said to be jointly continuous

if there is a function $f(x_1, \dots, x_n)$ such that for some set $C \subseteq \mathbb{R}^n$,

$$P((x_1, \dots, x_n) \in C) = \iint_C \dots \int_C f(x_1, \dots, x_n) dx_1, \dots, dx_n.$$

Ex: Suppose we have an experiment with r possible outcomes, with the i th outcome occurring with probability p_i , each mutually exclusive, $\sum_{i=1}^r p_i = 1$.

Suppose that we perform the experiment n times. Let X_i be the number of experiments with outcome i . Then the joint distribution

$$P(X_1=n_1, \dots, X_r=n_r) = \frac{n!}{n_1! \dots n_r!} p_1^{n_1} p_2^{n_2} \dots p_r^{n_r}$$

when $\sum n_i = n$, is called the multinomial distribution.

When $r=2$, then we have the binomial distribution.